These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CaV3.2 T-type Ca²⁺ channels in H₂S-mediated hypoxic response of the carotid body. Author: Makarenko VV, Peng YJ, Yuan G, Fox AP, Kumar GK, Nanduri J, Prabhakar NR. Journal: Am J Physiol Cell Physiol; 2015 Jan 15; 308(2):C146-54. PubMed ID: 25377087. Abstract: Arterial blood O2 levels are detected by specialized sensory organs called carotid bodies. Voltage-gated Ca(2+) channels (VGCCs) are important for carotid body O2 sensing. Given that T-type VGCCs contribute to nociceptive sensation, we hypothesized that they participate in carotid body O2 sensing. The rat carotid body expresses high levels of mRNA encoding the α1H-subunit, and α1H protein is localized to glomus cells, the primary O2-sensing cells in the chemoreceptor tissue, suggesting that CaV3.2 is the major T-type VGCC isoform expressed in the carotid body. Mibefradil and TTA-A2, selective blockers of the T-type VGCC, markedly attenuated elevation of hypoxia-evoked intracellular Ca(2+) concentration, secretion of catecholamines from glomus cells, and sensory excitation of the rat carotid body. Similar results were obtained in the carotid body and glomus cells from CaV3.2 knockout (Cacna1h(-/-)) mice. Since cystathionine-γ-lyase (CSE)-derived H2S is a critical mediator of the carotid body response to hypoxia, the role of T-type VGCCs in H2S-mediated O2 sensing was examined. Like hypoxia, NaHS, a H2S donor, increased intracellular Ca(2+) concentration and augmented carotid body sensory nerve activity in wild-type mice, and these effects were markedly attenuated in Cacna1h(-/-) mice. In wild-type mice, TTA-A2 markedly attenuated glomus cell and carotid body sensory nerve responses to hypoxia, and these effects were absent in CSE knockout mice. These results demonstrate that CaV3.2 T-type VGCCs contribute to the H2S-mediated carotid body response to hypoxia.[Abstract] [Full Text] [Related] [New Search]