These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anti-angiogenic effects of a mutant endostatin: a new prospect for treating retinal and choroidal neovascularization. Author: Bai Y, Zhao M, Zhang C, Li S, Qi Y, Wang B, Huang L, Li X. Journal: PLoS One; 2014; 9(11):e112448. PubMed ID: 25380141. Abstract: PURPOSE: Pathological fundus angiogenesis is a major cause of vision loss in retina diseases. Endostatin, a C-terminal fragment of collagen XVIII, is an endogenous anti-angiogenic protein. The present study aimed to investigate the in vitro and in vivo anti-angiogenic properties of two proteins: an N-terminal H1D/H3D mutant endostatin (M-ES) and a polyethylene glycol propionaldehyde (PEG) covalent M-ES (PEG-M-ES). METHODS: M-ES and PEG-M-ES properties were characterized in vitro using a zinc ion binding assay and a stability test. Activity assays, including migration, proliferation, and tube formation assays, were performed with human retinal microvascular endothelial cells (HRMECs) and human umbilical vein endothelial cells (HUVECs). Mouse oxygen-induced retinopathy (OIR) and choroidal neovascularization (CNV) models were used to evaluate in vivo anti-angiogenic effects. In addition, a rabbit model was used to study the retinal pharmacokinetic profile following an intravitreal injection. RESULTS: The results indicated that the H1D/H3D mutations of endostatin reduced the zinc binding capacity of M-ES and facilitated PEG covalent binding. PEG-M-ES was more stable and persisted longer in the retina compared with M-ES. The in vitro studies demonstrated that M-ES and PEG-M-ES inhibited HRMEC and HUVEC proliferation, migration, and tube formation more efficiently than ES. In vivo, a single intravitreal injection of M-ES and PEG-M-ES significantly decreased neovascularization in both the OIR and CNV animal models. CONCLUSION: The present study demonstrated for the first time that PEG-M-ES exhibits a long-term inhibitory effect on neovascularization in vitro and in vivo. These data suggest that PEG-M-ES may represent an innovative therapeutic strategy to prevent fundus neovascularization.[Abstract] [Full Text] [Related] [New Search]