These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epidermal growth factor responsiveness in smooth muscle cells from hypertensive and normotensive rats. Author: Scott-Burden T, Resink TJ, Baur U, Bürgin M, Bühler FR. Journal: Hypertension; 1989 Apr; 13(4):295-304. PubMed ID: 2538391. Abstract: Aortic smooth muscle cells from spontaneously hypertensive rats (SHR) exhibit inappropriate proliferation characteristics in culture that suggest a modified response to serum mitogens or growth factors. The present study compares vascular smooth muscle cells from SHR and normotensive Wistar-Kyoto (WKY) rats with respect to their proliferative and functional response to growth factors. Specific attention was focused on the interaction of these vascular smooth muscle cells with epidermal growth factor. An increased growth rate of vascular smooth muscle cells from SHR (vs. WKY rats) was observed when cells were cultured in the presence of serum (10% and 0.5%), but not under serum-free conditions. The additional presence of low serum concentrations (0.5%) was required for epidermal growth factor to elicit a proliferative response, whereupon smooth muscle cells from SHR displayed an increased (vs. WKY rats) growth rate. Saturation binding of [125I]epidermal growth factor to intact smooth muscle cells indicated a twofold increase in receptor density in SHR-derived cells (p less than 0.001 vs. WKY rats) without an alteration in affinity for the growth factor. Cells derived from SHR also exhibited greater functional responsiveness to epidermal growth factor when compared with smooth muscle cells from WKY rats as evidenced by amplifications of both S6 kinase activation, phosphoinositide catabolism, elevation of intracellular pH, and DNA synthesis (nuclear labeling). We conclude that increased responsiveness of SHR-derived smooth muscle cells to epidermal growth factor could contribute to alterations in vascular smooth muscle growth and tone that may be fundamental to the pathogenesis of hypertension and atherosclerosis.[Abstract] [Full Text] [Related] [New Search]