These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vitamin E conditionally inhibits atherosclerosis in ApoE knockout mice by anti-oxidation and regulation of vasculature gene expressions.
    Author: Tang F, Lu M, Zhang S, Mei M, Wang T, Liu P, Wang H.
    Journal: Lipids; 2014 Dec; 49(12):1215-23. PubMed ID: 25385496.
    Abstract:
    Lipid deposition in artery walls is implied in the pathogenesis of atherosclerosis and imbalance between uptake and efflux of cholesterol favors the deposition. We investigated the effect of vitamin E with the same dose and duration on the different stages of atherosclerosis in Apolipoprotein E knockout (ApoE KO) mice and explored the potential mechanisms. The results showed that the ApoE KO mouse spontaneously develops atherosclerosis in an age-dependent manner from 14 to 46 weeks on the regular chow. Vitamin E (100 mg/kg) supplementation to ApoE KO mice at 6, 14, and 22 weeks for 8 weeks significantly reduced the atherosclerotic lesion area by 41, 29 and 19% respectively compared to the age-matched control mice; however had no significant effect on the lesion when given at 30 and 38 weeks. In addition, vitamin E supplemented at the ages from 6 to 30 weeks decreased the contents of serum oxLDL and TBARS without affecting the TC and TAG contents in serum and liver. Furthermore, vitamin E supplemented at 6, 14 and 22 weeks down-regulated vasculature mRNA expressions of scavenger receptor CD36 and up-regulated mRNA expressions of PPARγ, LXRα and ABCA1 which are involved in reverse cholesterol transportation; however had no significant effects on these genes when given at 30 and 38 weeks. In conclusion, vitamin E with same dose and duration inhibits the early but not advanced atherosclerotic lesion in ApoE KO mice by anti-oxidation and regulation of mRNA expression of genes involved in cholesterol uptake and efflux, which favors the improvement of atherosclerosis.
    [Abstract] [Full Text] [Related] [New Search]