These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of myosin heavy-chain gene expression during skeletal-muscle hypertrophy. Author: Periasamy M, Gregory P, Martin BJ, Stirewalt WS. Journal: Biochem J; 1989 Feb 01; 257(3):691-8. PubMed ID: 2539093. Abstract: Changes in the myosin phenotype of differentiated muscle are a prominent feature of the adaptation of the tissue to a variety of physiological stimuli. In the present study the molecular basis of changes in the proportion of myosin isoenzymes in rat skeletal muscle which occur during compensatory hypertrophy caused by the combined removal of synergist muscles and spontaneous running exercise was investigated. The relative amounts of sarcomeric myosin heavy (MHC)- and light (MLC)-chain mRNAs in the plantaris (fast) and soleus (slow) muscles from rats was assessed with cDNA probes specific for different MHC and MLC genes. Changes in the proportion of specific MHC mRNA levels were in the same direction as, and of similar magnitude to, changes in the proportion of myosin isoenzymes encoded for by the mRNAs. No significant changes in the proportion of MLC proteins or mRNA were detected. However, high levels of MLC3 mRNA were measured in both normal and hypertrophied soleus muscles which contained only trace amounts of MLC3 protein. Small amounts of embryonic and neonatal MHC mRNAs were induced in both muscles during hypertrophy. We conclude that the change in the pattern of myosin isoenzymes during skeletal-muscle adaptation to work overload is a consequence of changes in specific MHC mRNA levels.[Abstract] [Full Text] [Related] [New Search]