These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluorofenidone attenuates TGF-β1-induced lung fibroblast activation via restoring the expression of caveolin-1.
    Author: Liu J, Song C, Xiao Q, Hu G, Tao L, Meng J.
    Journal: Shock; 2015 Feb; 43(2):201-7. PubMed ID: 25394239.
    Abstract:
    Caveolin-1 plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. We previously showed that fluorofenidone (FD), a novel pyridine agent, can attenuate bleomycin-induced experimental pulmonary fibrosis and restore the production of caveolin-1. In this study, we explore mainly whether caveolin-1 plays a critical role in the anti-pulmonary fibrosis effects of FD in vitro. The normal human lung fibroblasts (NHLFs) were cultured with transforming growth factor-β1 (TGF-β1) and then were treated with FD. Subsequently, NHLFs transfected with cav-1-siRNA were treated with TGF-β1 and/or FD. The expressions of α-smooth muscle actin (α-SMA), fibronectin, collagen I, caveolin-1, phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated P38 were measured by Western blot and/or real-time polymerase chain reaction. Fluorofenidone attenuated TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I; inhibited phosphorylation of ERK, JNK, and P38; and restored caveolin-1 protein expression but cannot increase caveolin-1 mRNA level in vitro. After caveolin-1 was silenced, FD could not downregulate TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I or phosphorylation of ERK, JNK, and P38. These studies demonstrate that FD, a potential antifibrotic agent, may attenuate TGF-β1-induced activation of NHLFs by restoring the expression of caveolin-1.
    [Abstract] [Full Text] [Related] [New Search]