These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of VBMDMP on the reversal of cisplatin resistance in human lung cancer A549/DDP cells.
    Author: Wang CK, Zhang Y, Zhang ZJ, Qiu QW, Cao JG, He ZM.
    Journal: Oncol Rep; 2015 Jan; 33(1):372-82. PubMed ID: 25394854.
    Abstract:
    Tumor drug resistance is a major obstacle to cancer chemotherapy. We previously constructed a fusion protein based on two tumstatin-derived sequences named recombinant VBMDM (rVBMDMP). We preliminarily confirmed its inhibition of HUVEC and colon cancer cell growth. The present study further systematically observed the inhibitory effect of rVBMDMP on lung cancer cell growth and analyzed a possible mechanism to provide a theoretical basis for the development of new antitumor protein drugs. The effect of rVBMDMP on human lung adenocarcinoma (A549) and cisplatin-resistant human lung adenocarcinoma (A549/DDP) cell proliferation was evaluated by MTS assay. Hoechst 33342 staining performed together with fluorescence microscopy and immunoblot analysis were used to examine the effects of rVBMDMP on the apoptosis of A549/DDP cells. A protein phosphorylation chip was used to identify changes in rVBMDMP-induced signaling protein phosphorylation. Changes in the phosphatidylinositol 3 kinase (PI3K)/Akt signal transduction pathway and expression of multidrug resistance protein (MRP-2)-related molecules following rVBMDMP treatment in A549/DDP cells were evaluated by western blot analysis. A lung cancer xenograft model was used to evaluate the reversal effect of rVBMDMP on drug-resistance of A549/DDP cell tumors to cisplatin in vivo. The results demonstrated that rVBMDMP increased the phosphorylation of 79 signaling proteins, including focal adhesion kinase (FAK), caspase-6, Fas, FasL and FAF1 and downregulated 30 signaling proteins, including integrin αV, integrin β3, PI3K/Akt, NF-κB and MRP-2 compared with the controls. rVBMDMP also increased the sensitivity of A549 and A549/DDP cells to cisplatin and directly induced apoptosis, which may be related to MRP-2 and Bcl-2 downregulation. The effects of growth inhibition and apoptosis induction of rVBMDMP on A549/DDP cells may be related to the inhibition of integrin αVβ3 and PI3K/Akt protein phosphorylation. Finally, we observed an increase in cancer cell sensitivity to cisplatin by rVBMDMP using the A549/DDP cell xenograft model in nude mice. Our study suggests that rVBMDMP may be an effective potential chemotherapy sensitizer and may be a viable drug candidate in anticancer therapies.
    [Abstract] [Full Text] [Related] [New Search]