These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In silico prediction of physical protein interactions and characterization of interactome orphans.
    Author: Kotlyar M, Pastrello C, Pivetta F, Lo Sardo A, Cumbaa C, Li H, Naranian T, Niu Y, Ding Z, Vafaee F, Broackes-Carter F, Petschnigg J, Mills GB, Jurisicova A, Stagljar I, Maestro R, Jurisica I.
    Journal: Nat Methods; 2015 Jan; 12(1):79-84. PubMed ID: 25402006.
    Abstract:
    Protein-protein interactions (PPIs) are useful for understanding signaling cascades, predicting protein function, associating proteins with disease and fathoming drug mechanism of action. Currently, only ∼ 10% of human PPIs may be known, and about one-third of human proteins have no known interactions. We introduce FpClass, a data mining-based method for proteome-wide PPI prediction. At an estimated false discovery rate of 60%, we predicted 250,498 PPIs among 10,531 human proteins; 10,647 PPIs involved 1,089 proteins without known interactions. We experimentally tested 233 high- and medium-confidence predictions and validated 137 interactions, including seven novel putative interactors of the tumor suppressor p53. Compared to previous PPI prediction methods, FpClass achieved better agreement with experimentally detected PPIs. We provide an online database of annotated PPI predictions (http://ophid.utoronto.ca/fpclass/) and the prediction software (http://www.cs.utoronto.ca/~juris/data/fpclass/).
    [Abstract] [Full Text] [Related] [New Search]