These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism and meat quality.
    Author: Xing T, Xu XL, Zhou GH, Wang P, Jiang NN.
    Journal: J Anim Sci; 2015 Jan; 93(1):62-70. PubMed ID: 25403192.
    Abstract:
    The objective of this study was to determine the effects of different transport times on broilers during summer on stress, meat quality, and early postmortem muscle metabolites. Arbor Acres broiler chickens (n = 105) were randomly categorized into 5 treatments: unstressed control, 0.5 h, 1 h, 2 h, and 4 h transport. Each treatment consisted of 3 replicates with 7 birds each. All birds (except the control group) were transported according to a designed protocol. With the extension of transport time, the activities of plasma creatine kinase (CK) and lactate dehydrogenase (LDH) gradually increased. The content of heat shock protein 70 (Hsp70) did not change significantly during 0.5 h transport compared to the control group, but was significantly higher (P < 0.05) at 1 h or more of transport time. Also, transport times of 2 h or more resulted in a death rate of 20%-33% of broilers. We found that the breast meat in the 0.5 h transport group had significantly (P < 0.05) higher L* values, drip loss, cooking loss, AMP/ATP ratio, and phosphorylation of AMP-activated protein kinase (p-AMPK). In addition, pH24h was lower compared to the control group, increasing the likelihood of pale, soft, and exudative (PSE)-like meat. However, no significant variations were found in meat color, drip loss, or cooking loss in other transport groups compared to the control group under the condition of this study. Muscle glycogen content decreased with time of transportation. There were significant correlations among p-AMPK and meat quality (P < 0.05). These results indicate that preslaughter transport during summer may cause severe physiological and biochemical changes of broilers. Further investigations studying the deeper relationship between biological indicators and meat quality according to the similar transport conditions would provide a better understanding of the effect of transport duration on meat quality.
    [Abstract] [Full Text] [Related] [New Search]