These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low Mr GTP-binding proteins in human platelets: cyclic AMP-dependent protein kinase phosphorylates m22KG(I) in membrane but not c21KG in cytosol. Author: Nagata K, Nagao S, Nozawa Y. Journal: Biochem Biophys Res Commun; 1989 Apr 14; 160(1):235-42. PubMed ID: 2540745. Abstract: We have purified and characterized two kinds of GTP-binding proteins with Mr of 22,000 in human platelet membrane (main; m22KG(I), minor; m22KG(II)) (Nagata, K. and Nozawa, Y. (1988) FEBS Lett. 238, 90-94). In this study, the main GTP-binding protein (m22KG(I)) was found to be phosphorylated by cyclic AMP-dependent protein kinase (A-kinase), but not by protein kinase C. About 0.5 mol of phosphate was maximally incorporated into one mol of the protein and this phosphorylation was inhibited in the presence of A-kinase inhibitor. Phosphorylation of m22KG(I) did not alter either its GTP-binding or GTPase activity. When m22KG(I) was incubated alone or in the presence of 100 microM guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) and then exposed to A-kinase, no significant changes in the level of phosphorylation were observed. On the other hand, the most abundant GTP-binding protein with Mr of 21,000 (c21KG) in human platelet cytosol, which was identified as a transformation suppressor gene product (rap 1 protein, smg p21 and Krev-1 protein), was not phosphorylated by A-kinase under the same condition. However, c21KG was phosphorylated by A-kinase after pretreatment with alkaline phosphatase.[Abstract] [Full Text] [Related] [New Search]