These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. Author: Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY, Chen SF. Journal: PLoS One; 2014; 9(11):e113397. PubMed ID: 25415296. Abstract: Tropomyosin-related kinase B (TrkB) signaling is critical for promoting neuronal survival following brain damage. The present study investigated the effects and underlying mechanisms of TrkB activation by the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) on traumatic brain injury (TBI). Mice subjected to controlled cortical impact received intraperitoneal 7,8-DHF or vehicle injection 10 min post-injury and subsequently daily for 3 days. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of TrkB signaling-related molecules and apoptosis-related proteins were analyzed. The protective effect of 7,8-DHF was also investigated in primary neurons subjected to stretch injury. Treatment with 20 mg/kg 7,8-DHF attenuated functional deficits and brain damage up to post-injury day 28. 7,8-DHF also reduced brain edema, neuronal death, and apoptosis at day 4. These changes were accompanied by a significant decrease in cleaved caspase-3 and increase in Bcl-2/Bax ratio. 7,8-DHF enhanced phosphorylation of TrkB, Akt (Ser473/Thr308), and Bad at day 4, but had no effect on Erk 1/2 phosphorylation. Moreover, 7,8-DHF increased brain-derived neurotrophic factor levels and promoted cAMP response element-binding protein (CREB) activation. This beneficial effect was attenuated by inhibition of TrkB or PI3K/Akt. 7,8-DHF also promoted survival and reduced apoptosis in cortical neurons subjected to stretch injury. Remarkably, delayed administration of 7,8-DHF at 3 h post-injury reduced brain tissue damage. Our study demonstrates that activation of TrkB signaling by 7,8-DHF protects against TBI via the PI3K/Akt but not Erk pathway, and this protective effect may be amplified via the PI3K/Akt-CREB cascades.[Abstract] [Full Text] [Related] [New Search]