These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of polycaprolactone as a new sorbent coating for determination of polar organic compounds in water samples using membrane-SPME.
    Author: Marcinkowski Ł, Kloskowski A, Spietelun A, Namieśnik J.
    Journal: Anal Bioanal Chem; 2015 Feb; 407(4):1205-15. PubMed ID: 25416232.
    Abstract:
    Commercially available solid-phase microextraction fibers used for isolation of polar analytes are based on the adsorption phenomenon. In consequence, typical limitations bonded with analytes displacement and matrix effects are very frequent. In the present study, alternative solution is described. Polycaprolactone (PCL) was used for the first time as sorbent to isolate polar organic compounds from water samples using the membrane-solid-phase microextraction (M-SPME) technique. In this technique, due to protective role of the mechanically and thermally stable polydimethylsiloxane (PDMS) membrane, internal polar coating might be melted during extraction and desorption of analytes. In consequence sorbents with low melting points like a PCL might be utilized. Based on chromatographic retention data, triazines were selected as a model compounds for evaluation of the sorptive properties of the polycaprolactone. Applying the screening plan and central composite design, statistically significant parameters influencing extraction efficiency were determined and optimized. The analysis of variance confirmed the significant influence of temperature, salt content, and pH of samples on the extraction efficiency. Besides the new PCL/PDMS fiber, a commercial fiber coated with divinylbenzene/polydimethylsiloxane (DVB/PDMS) was used for comparative studies. The results obtained showed that PCL is an interesting sorbent which can be successfully applied for isolation of polar organics from aqueous matrices at a broad range of analytes concentration. The determined detection limits of procedure based on the novel fiber enable its application at the concentration levels of triazines recommended by the US EPA standards. The practical applicability of the developed fiber has been confirmed by the results based on the analysis of real samples.
    [Abstract] [Full Text] [Related] [New Search]