These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidoreduction reactions involving the electrostatic and the covalent complex of cytochrome c and plastocyanin: importance of the protein rearrangement for the intracomplex electron-transfer reaction.
    Author: Peerey LM, Kostić NM.
    Journal: Biochemistry; 1989 Feb 21; 28(4):1861-8. PubMed ID: 2541766.
    Abstract:
    Horse heart cytochrome c and French bean plastocyanin are cross-linked one-to-one by a carbodiimide [Geren, L. M., Stonehuerner, J., Davis, D. J., & Millett, F. (1983) Biochim. Biophys. Acta 724, 62] in the same general orientation in which they associate electrostatically [King, G. C., Binstead, R. A., & Wright, P. E. (1985) Biochim. Biophys. Acta 806, 262]. The reduction potentials of the Fe and Cu atoms in the covalent diprotein complex are respectively 245 and 385 mV vs NHE; the EPR spectra of the two metals are not perturbed by cross-linking. Four isomers of the covalent diprotein complex, which probably differ slightly from one another in the manner of cross-linking, are separated efficiently by cation-exchange chromatography. Stopped-flow spectrophotometric experiments with the covalent diprotein complex show that the presence of plastocyanin somewhat inhibits oxidation of ferrocytochrome c by [Fe(CN)6]3- and somewhat promotes oxidation of this protein by [Fe(C5H5)2]+. These changes in reactivity are explained in terms of electrostatic and steric effects. Pulse-radiolysis experiments with the electrostatic diprotein complex yield association constants of greater than or equal to 5 X 10(6) and 1 X 10(5) M-1 at ionic strengths of 1 and 40 mM, respectively, and the rate constant of 1.05 X 10(3) s-1, regardless of the ionic strength, for the intracomplex electron-transfer reaction. Analogous pulse-radiolysis experiments with each of the four isomers of the covalent diprotein complex, at ionic strengths of both 2 and 200 mM, show an absence of the intracomplex electron-transfer reaction. A rearrangement of the proteins for this reaction seems to be possible (or unnecessary) in the electrostatic complex but impossible in the covalent complex.
    [Abstract] [Full Text] [Related] [New Search]