These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coordination of intrinsic and extrinsic foot muscles during walking.
    Author: Zelik KE, La Scaleia V, Ivanenko YP, Lacquaniti F.
    Journal: Eur J Appl Physiol; 2015 Apr; 115(4):691-701. PubMed ID: 25420444.
    Abstract:
    PURPOSE: The human foot undergoes complex deformations during walking due to passive tissues and active muscles. However, based on prior recordings it is unclear if muscles that contribute to flexion/extension of the metatarsophalangeal (MTP) joints are activated synchronously to modulate joint impedance, or sequentially to perform distinct biomechanical functions. We investigated the coordination of MTP flexors and extensors with respect to each other, and to other ankle-foot muscles. METHODS: We analyzed surface electromyographic (EMG) recordings of intrinsic and extrinsic foot muscles for healthy individuals during level treadmill walking, and also during sideways and tiptoe gaits. We computed stride-averaged EMG envelopes and used the timing of peak muscle activity to assess synchronous vs. sequential coordination. RESULTS: We found that peak MTP flexor activity occurred significantly before peak MTP extensor activity during walking (P < 0.001). The period around stance-to-swing transition could be roughly characterized by sequential peak muscle activity from the ankle plantarflexors, MTP flexors, MTP extensors, and then ankle dorsiflexors. We found that foot muscles that activated synchronously during forward walking tended to dissociate during other locomotor tasks. For instance, extensor hallucis brevis and extensor digitorum brevis muscle activation peaks decoupled during sideways gait. CONCLUSIONS: The sequential peak activity of MTP flexors followed by MTP extensors suggests that their biomechanical contributions may be largely separable from each other and from other extrinsic foot muscles during walking. Meanwhile, the task-specific coordination of the foot muscles during other modes of locomotion indicates a high-level of specificity in their function and control.
    [Abstract] [Full Text] [Related] [New Search]