These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The osteogenic or adipogenic lineage commitment of human mesenchymal stem cells is determined by protein kinase C delta. Author: Lee S, Cho HY, Bui HT, Kang D. Journal: BMC Cell Biol; 2014 Nov 25; 15():42. PubMed ID: 25420887. Abstract: BACKGROUND: Mesenchymal stem cells (MSCs) have the potential to differentiate into specialized cell lineages such as osteoblasts and adipocytes in vitro. There exists a reciprocal relationship between osteogenic and adipogenic differentiation of MSCs that an osteogenic phenotype occurs at the expense of an adipogenic phenotype and vice versa, which in turn influence one another's phenotype through negative feedback loops. Thus, it is important to understand what signaling molecules modulate the lineage commitment of MSCs. Protein kinase C (PKC) plays a central role in cellular signal transduction for mediating diverse biological functions, and dysregulation of PKC activity is involved in various metabolic diseases including cancer, diabetes, and heart disease. Although the role of individual PKC isoforms has been investigated in various fields, the potential role of PKC in bone metabolism is not completely understood. In this study, we investigated the potential role of PKCδ in osteogenic lineage commitment of human bone marrow-derived mesenchymal stem cells (hBMSCs). RESULTS: We observed that expression and phosphorylation of PKCδ were increased during osteogenic differentiation of hBMSCs. Pharmacological inhibition and genetic ablation of PKCδ in hBMSCs resulted in a significant attenuation of osteogenic differentiation as evidenced by reduced ALP activity and ECM mineralization, as well as down-regulation of the expression of osteoblast-specific genes. These effects were also accompanied by induction of adipogenic differentiation and up-regulation of the expression of adipocyte-specific genes involved in lipid synthesis in osteogenic induction of hBMSCs. Additionally, the activation of AMPK, which is a key cellular energy sensor, induced osteogenesis of hBMSCs. However, the inhibition of AMPK activity by compound C did not affect the activation of PKCδ at all, indicating that there is no direct correlation between AMPK and PKCδ in osteogenesis of hBMSCs. CONCLUSIONS: These results suggest that PKCδ is a critical regulator for the balance between osteogenesis and adipogenesis of hBMSCs and thus has a potential novel therapeutic target for the treatment of metabolic bone diseases.[Abstract] [Full Text] [Related] [New Search]