These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Elastic properties of GaN nanowires: revealing the influence of planar defects on young's modulus at nanoscale. Author: Dai S, Zhao J, He MR, Wang X, Wan J, Shan Z, Zhu J. Journal: Nano Lett; 2015 Jan 14; 15(1):8-15. PubMed ID: 25427143. Abstract: The elastic properties of gallium nitride (GaN) nanowires with different structures were investigated by in situ electron microscopy in this work. The electric-field-induced resonance method was utilized to reveal that the single crystalline GaN nanowires, along [120] direction, had the similar Young's modulus as the bulk value at the diameter ranging 92-110 nm. Meanwhile, the elastic behavior of the obtuse-angle twin (OT) GaN nanowires was disclosed both by the in situ SEM resonance technique and in situ transmission electron microscopy tensile test for the first time. Our results showed that the average Young's modulus of these OT nanowires was greatly decreased to about 66 GPa and indicated no size dependence at the diameter ranging 98-171 nm. A quantitative explanation for this phenomenon is proposed based on the rules of mixtures in classical mechanics. It is revealed that the elastic modulus of one-dimensional nanomaterials is dependent on the relative orientations and the volume fractions of the planar defects.[Abstract] [Full Text] [Related] [New Search]