These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Facile fabrication of heterostructured g-C₃N₄/Bi₂MoO₆ microspheres with highly efficient activity under visible light irradiation.
    Author: Yan T, Yan Q, Wang X, Liu H, Li M, Lu S, Xu W, Sun M.
    Journal: Dalton Trans; 2015 Jan 28; 44(4):1601-11. PubMed ID: 25428510.
    Abstract:
    A facile and template-free solvothermal method was developed for the synthesis of microspheric g-C3N4/Bi2MoO6 photocatalysts. The obtained g-C3N4/Bi2MoO6 composites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-electron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible diffuse reflection spectroscopy (DRS). The XRD, FTIR, and HRTEM characterization results confirmed the formation of heterojunction structures at the interfaces of g-C3N4 and Bi2MoO6. The DRS results showed that the absorption edges of g-C3N4/Bi2MoO6 composites were red shifted in the visible light region with the increase of g-C3N4 content. The SEM and TEM images revealed that the composites exhibited a microsphere-like morphology and were composed of smaller nanoplates. The elemental mapping images revealed that g-C3N4 and Bi2MoO6 nanoflakes uniformly assembled together to form hierarchical flowers. Compared with pure g-C3N4 and Bi2MoO6, the as-prepared samples exhibited superior photocatalytic activity towards the degradation of dyes (Rhodamine B and Methyl blue) under visible light irradiation. The enhanced photocatalytic activity of g-C3N4/Bi2MoO6 composites could be attributed to their strong visible light absorption, the high migration efficiency of photo-induced carriers, and the interfacial electronic interaction. The electrochemical impedance spectroscopy (EIS) confirmed that the interface charge separation efficiency was greatly improved by coupling g-C3N4 with Bi2MoO6. It was also confirmed that the photo-degradation of dye molecules is mainly attributed to the oxidizing ability of the generated holes (h(+)) and partly to the oxidizing ability of ·O2(-) and ·OH radicals.
    [Abstract] [Full Text] [Related] [New Search]