These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Studies of embryotoxic mechanisms of niridazole: evidence that oxygen depletion plays a role in dysmorphogenicity. Author: Fantel AG, Juchau MR, Burroughs CJ, Person RE. Journal: Teratology; 1989 Mar; 39(3):243-51. PubMed ID: 2543096. Abstract: Previous study has shown that niridazole (NDZ) is dysmorphogenic to rat embryos between days 10 and 11 under culture conditions including 5% oxygen. Other studies have found that reductive embryonic biotransformation is required but that covalent binding is not a major basis of this embryotoxicity. In research presented here, NDZ exposure of homogenates prepared from day 10 rat embryos resulted in stimulation of oxygen uptake from incubation media. Further studies showed that a large percentage of this increased oxygen uptake was associated with the generation of superoxide anion radical and hydrogen peroxide. These findings led us to hypothesize that redox cycling forms the basis of the in vitro dysmorphogenicity of NDZ. The basic premise of this hypothesis is that as a result of redox cycling, oxygen is depleted from the sensitive tissues of embryos. In order to investigate it, we devised a technique for carefully controlling and monitoring oxygen tensions in embryo cultures. We found that when oxygen concentrations of 4% were established, a highly significant incidence of asymmetric defects resulted. These defects appeared analogous to those induced by NDZ exposure, consisting of asymmetric necrosis of mesenchymal tissue near the cephalic end of the neural tube and thinning of the neuroepithelium on the right. We concluded that the hypoxia induced by redox cycling of NDZ and related nitroheterocycles represents a major embryotoxic principle of action.[Abstract] [Full Text] [Related] [New Search]