These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for the involvement of three distinct signals in the induction of IL-2 gene expression in human T lymphocytes.
    Author: June CH, Ledbetter JA, Lindsten T, Thompson CB.
    Journal: J Immunol; 1989 Jul 01; 143(1):153-61. PubMed ID: 2543699.
    Abstract:
    The regulation of IL-2 gene expression during T cell activation and proliferation has been investigated in primary cultures of purified human peripheral blood T cells. Prior results indicated that stimulation of T cells by anti-CD28 mAb plus PMA could induce IL-2 expression and T cell proliferation that was entirely resistant to cyclosporine. The present studies examined whether CD28 augments IL-2 expression by a unique pathway or merely acts at a point common to CD3-induced proliferation but distal to the effects of cyclosporine. The induction of maximal IL-2 gene expression required three signals provided by phorbol ester, calcium ionophore, and anti-CD28 mAb. Stimulation of cells by optimal amounts of calcium ionophore and PMA induced IL-2 mRNA that was completely suppressed by cyclosporine. The addition of anti-CD28 to T cells stimulated with PMA plus calcium ionophore induced a 5- to 100-fold increase in IL-2 gene expression and secretion that was resistant to cyclosporine. The CD28 signal was able to increase steady state IL-2 mRNA levels even in cells treated with maximally tolerated amounts of calcium ionophore and PMA. The three-signal requirement did not reflect differential regulation of lymphokine gene expression between the CD4 and CD8 T cell subsets or differences in the kinetics of IL-2 mRNA expression. The signal provided by CD28 is distinct from that of CD3 because although anti-CD28 plus PMA-induced proliferation is resistant to cyclosporine, anti-CD3 or anti-CD3 plus PMA-induced IL-2 expression is sensitive. Thus, these studies show that three biochemically distinct signals are required for maximal IL-2 gene expression. Furthermore, these studies suggest that lymphokine production in T cells is not controlled by an "on/off" switch, but rather, that CD28 regulates a distinct intracellular pathway which modulates the level of IL-2 production on a per cell basis. The observation that CD28 stimulation results in IL-2 concentrations that exceed 1000 U/m1 in tissue culture supernatants suggests that a role in vivo for CD28 might be to amplify immune responses initiated by the CD3/T cell receptor complex. Finally, the observation that CD28 interacts with the signals provided by PMA and calcium ionophore shows that the function of CD28 is not merely to act as a scaffold to stabilize or enhance signalling through the CD3/TCR complex.
    [Abstract] [Full Text] [Related] [New Search]