These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation and evaluation of dextran-grafted agarose resin for hydrophobic charge-induction chromatography.
    Author: Liu T, Lin DQ, Lu HL, Yao SJ.
    Journal: J Chromatogr A; 2014 Nov 21; 1369():116-24. PubMed ID: 25441078.
    Abstract:
    Hydrophobic charge-induction chromatography (HCIC) is a new and effective technology for antibody separation. In the present work, HCIC resin MMI-B-XL was prepared with dextran-grafted agarose gel as the matrix and 2-mercapto-1-methyl-imidazole (MMI) as the functional ligand. The preparation procedures were optimized, and the maximum ligand density could reach as high as 200 μmol/g gel. The adsorption isotherms and kinetics on new resins were investigated with human immunoglobulin G (hIgG) as the model protein, which were compared with non-grafted HCIC resin MMI-B-6FF. It was found that the saturated adsorption capacity (Qm) increased with the increase of ligand density for MMI-B-XL. Moreover, the effective diffusivity (De) could be dramatically enhanced with the increase of ligand density for MMI-B-XL, and the De for MMI-B-XL with the ligand density of 200 μmol/g gel was 18-40 times higher than that for MMI-B-6FF. The breakthrough experiments indicated that new resins with the ligand density of 200 μmol/g gel could be used for high superficial velocity and high dynamic adsorption could be obtained. The results indicated that dextran-grafted layer on the resin could increase the ligand density, enhance the mass transport in the pore, and improve the dynamic adsorption at high velocity, which showed a potential application for large-scale antibody purification.
    [Abstract] [Full Text] [Related] [New Search]