These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ag nanoclusters as probes for turn-on fluorescence recognition of TpG dinucleotide with a high selectivity. Author: Peng J, Shao Y, Liu L, Zhang L, Liu H, Wang Y. Journal: Anal Chim Acta; 2014 Nov 19; 850():78-84. PubMed ID: 25441163. Abstract: CpG dinucleotide in DNA has a great tendency to mutate to TpG dinucleotide and this transition can cause some serious diseases. In this work, fluorescent Ag nanoclusters (Ag NCs) were employed as useful inorganic fluorophores for the potential of selectively discriminating TpG dinucleotide from CpG dinucleotide. Opposite the base Y of interest in YpG dinucleotide (Y=C or T), a bulge site was introduced so as to make the base Y to be unpaired and ready for Ag(+) binding. Such that the unpaired Y and context base pairs can provide a specific space suitable for creating fluorescent Ag NCs. We found that in comparison with CpG dinucleotide, TpG dinucleotide is much more efficient in growing fluorescent Ag NCs. Therefore, mutation of CpG dinucleotide to TpG can be identified by a turn-on fluorescence response and a high selectivity. More interestingly, Ag NCs exhibit a better performance in the TpG recognition over the other dinucleotides (Y=A and G) than the previously used organic fluorophores. Additionally, the effectiveness of the bulge site design in discriminating these dinucleotides was evidenced by control DNAs having the abasic site structure. We expect that a practical method for TpG dinucleotide recognition with a high selectivity can be developed using the bulge site-grown fluorescent Ag NCs as novel probes.[Abstract] [Full Text] [Related] [New Search]