These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conformational transition of aquomethemoglobin: intramolecular histidine E7 binding reaction to the heme iron in the temperature range between 220 K and 295 K as seen by EPR and temperature-jump measurements.
    Author: Steinhoff HJ, Lieutenant K, Redhardt A.
    Journal: Biochim Biophys Acta; 1989 Jun 13; 996(1-2):49-56. PubMed ID: 2544230.
    Abstract:
    Temperature-dependent EPR and temperature-jump measurements have been carried out, in order to examine the high-spin to low-spin transition of aquomethemogobin (pH 6.0). Relaxation rates and equilibrium constants could be determined as a function of temperature. As a reaction mechanism for the high-spin to low-spin transition, the binding of N epsilon of His E7 to the heme iron had been proposed; the same mechanism had been suggested for the ms-effect, found in temperature-jump experiments on aquomethemoglobin. A comparison of the thermodynamic quantities, deduced form the measurements in this paper, gives evidence that indeed the same reaction is investigated in both cases. Our results and most of the findings of earlier studies on the spin-state transitions of aquomethemoglobin, using susceptibility, optical, or EPR measurements, can be explained by the transition of methemoglobin with H2O as ligand (with high-spin state at all temperatures) and methemoglobin with ligand N epsilon of His E7 (with a low-spin ground state). Thermal fluctuations of large amplitude have to be postulated for the reaction to take place, so this reaction may be understood as a probe for the study of protein dynamics.
    [Abstract] [Full Text] [Related] [New Search]