These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The roles of noncoding RNA Rli60 in regulating the virulence of Listeria monocytogenes.
    Author: Peng YL, Meng QL, Qiao J, Xie K, Chen C, Liu TL, Hu ZX, Ma Y, Cai XP, Chen CF.
    Journal: J Microbiol Immunol Infect; 2016 Aug; 49(4):502-8. PubMed ID: 25442865.
    Abstract:
    BACKGROUND: Listeria monocytogenes (LM) is an important zoonotic foodborne pathogen. Noncoding RNA (ncRNA) has an important role in regulating its virulence. As a member of ncRNA, however, the function of Rli60 in regulating LM virulence remain unclear. The aim of this study was to investigate the role of Rli60 in regulating LM virulence. METHODS: Using a homologous recombination method, a LM EGD-e rli60 gene deletion strain (LM-Δrli60) was constructed and compared with a LM EGD-e strain in the following respects: (1) adhesiveness, invasion ability, intracellular survival, proliferation, and transcription of virulence genes in the mouse macrophage cell line RAW264.7; (2) 50% lethal dose (LD50) to the BALB/c mouse; and (3) the amount in the mouse liver and spleen and the effects on pathology of mouse liver, spleen, and kidney after inoculation. RESULTS: The LM-Δrli60 strain had a significantly higher adhesion rate and lower invasion rate with significantly lower intracellular survival and proliferation rates in the RAW264.7 cell line, compared to the LM EGD-e strain. Inoculation with LM-Δrli60 strain significantly affected the transcription of virulence genes. The LD50 of LM-Δrli60 to BALB/c mouse was increased by 2.12 logarithmic magnitude, which indicated that the virulence in LM-Δrli60 is significantly decreased (p < 0.05). The amount of LM-Δrli60 in the liver and spleen was significantly lower than the amount of LM EGD-e in these organs (p < 0.05). The pathological damage due to LM-Δrli60 infection in the mouse liver, spleen, and kidney was lower than the damage due to LM EGD-e infection. CONCLUSION: This study confirmed that the rli60 deletion could significantly affect LM virulence, adhesion, invasion, survival, and proliferation. This suggests that Rli60 has an important role in regulating LM virulence.
    [Abstract] [Full Text] [Related] [New Search]