These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens.
    Author: Chan TF, Ji KM, Yim AK, Liu XY, Zhou JW, Li RQ, Yang KY, Li J, Li M, Law PT, Wu YL, Cai ZL, Qin H, Bao Y, Leung RK, Ng PK, Zou J, Zhong XJ, Ran PX, Zhong NS, Liu ZG, Tsui SK.
    Journal: J Allergy Clin Immunol; 2015 Feb; 135(2):539-48. PubMed ID: 25445830.
    Abstract:
    BACKGROUND: A sequenced house dust mite (HDM) genome would advance our understanding of HDM allergens, a common cause of human allergies. OBJECTIVE: We sought to produce an annotated Dermatophagoides farinae draft genome and develop a combined genomic-transcriptomic-proteomic approach for elucidation of HDM allergens. METHODS: A D farinae draft genome and transcriptome were assembled with high-throughput sequencing, accommodating microbiome sequences. The allergen gene structures were validated by means of Sanger sequencing. The mite's microbiome composition was determined, and the predominant genus was validated immunohistochemically. The allergenicity of a ubiquinol-cytochrome c reductase binding protein homologue was evaluated with immunoblotting, immunosorbent assays, and skin prick tests. RESULTS: The full gene structures of 20 canonical allergens and 7 noncanonical allergen homologues were produced. A novel major allergen, ubiquinol-cytochrome c reductase binding protein-like protein, was found and designated Der f 24. All 40 sera samples from patients with mite allergy had IgE antibodies against rDer f 24. Of 10 patients tested, 5 had positive skin reactions. The predominant bacterial genus among 100 identified species was Enterobacter (63.4%). An intron was found in the 13.8-kDa D farinae bacteriolytic enzyme gene, indicating that it is of HDM origin. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed a phototransduction pathway in D farinae, as well as thiamine and amino acid synthesis pathways, which is suggestive of an endosymbiotic relationship between D farinae and its microbiome. CONCLUSION: An HDM genome draft produced from genomic, transcriptomic, and proteomic experiments revealed allergen genes and a diverse endosymbiotic microbiome, providing a tool for further identification and characterization of HDM allergens and development of diagnostics and immunotherapeutic vaccines.
    [Abstract] [Full Text] [Related] [New Search]