These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The CRF₁ receptor antagonist SSR125543 prevents stress-induced long-lasting sleep disturbances in a mouse model of PTSD: comparison with paroxetine and d-cycloserine.
    Author: Philbert J, Beeské S, Belzung C, Griebel G.
    Journal: Behav Brain Res; 2015 Feb 15; 279():41-6. PubMed ID: 25446760.
    Abstract:
    The selective CRF₁ (corticotropin releasing factor type 1) receptor antagonist SSR125543 has been previously shown to attenuate the long-term behavioral and electrophysiological effects produced by traumatic stress exposure in mice. Sleep disturbances are one of the most commonly reported symptoms by people with post-traumatic stress disorder (PTSD). The present study aims at investigating whether SSR125543 (10 mg/kg/day/i.p. for 2 weeks) is able to attenuate sleep/wakefulness impairment induced by traumatic stress exposure in a model of PTSD in mice using electroencephalographic (EEG) analysis. Effects of SSR125543 were compared to those of the 5-HT reuptake inhibitor, paroxetine (10 mg/kg/day/i.p.), and the partial N-methyl-d-aspartate (NMDA) receptor agonist, d-cycloserine (10 mg/kg/day/i.p.), two compounds which have demonstrated clinical efficacy against PTSD. Baseline EEG recording was performed in the home cage for 6h prior to the application of two electric foot-shocks of 1.5 mA. Drugs were administered from day 1 post-stress to the day preceding the second EEG recording session, performed 14 days later. Results showed that at day 14 post-stress, shocked mice displayed sleep fragmentation as shown by an increase in the occurrence of both non-rapid eye movement (NREM) sleep and wakefulness bouts. The duration of wakefulness, NREM and REM sleep were not significantly affected. The stress-induced effects were prevented by repeated administration of SSR125543, paroxetine and D-cycloserine. These findings confirm further that the CRF₁ receptor antagonist SSR125543 is able to attenuate the deleterious effects of traumatic stress exposure.
    [Abstract] [Full Text] [Related] [New Search]