These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure.
    Author: Soucy KG, Giridharan GA, Choi Y, Sobieski MA, Monreal G, Cheng A, Schumer E, Slaughter MS, Koenig SC.
    Journal: J Heart Lung Transplant; 2015 Jan; 34(1):122-131. PubMed ID: 25447573.
    Abstract:
    BACKGROUND: Rotary blood pumps operate at a constant speed (rpm) that diminishes vascular pulsatility and variation in ventricular end-systolic and end-diastolic volumes, which may contribute to adverse events, including aortic insufficiency and gastrointestinal bleeding. In this study, pump speed modulation algorithms for generating pulsatility and variation in ventricular end-systolic and end-diastolic volumes were investigated in an ischemic heart failure (IHF) bovine model (n = 10) using a clinically implanted centrifugal-flow left ventricular assist device (LVAD). METHODS: Hemodynamic and hematologic measurements were recorded during IHF baseline, constant pumps speeds, and asynchronous (19-60 cycles/min) and synchronous (copulse and counterpulse) pump speed modulation profiles using low relative pulse speed (±25%) of 3,200 ± 800 rpm and high relative pulse speed (±38%) of 2,900 ± 1,100 rpm. End-organ perfusion, hemodynamics, and pump parameters were measured to characterize pulsatility, myocardial workload, and LVAD performance for each speed modulation profile. RESULTS: Speed modulation profiles augmented aortic pulse pressure, surplus hemodynamic energy, and end-organ perfusion (p < 0.01) compared with operation at constant speed. Left ventricular external work and myocardial oxygen consumption were significantly reduced compared with IHF baseline (p < 0.01) but at the expense of higher LVAD power consumption. CONCLUSIONS: Pump speed modulation increases pulsatility and improves cardiac function and end-organ perfusion, but the asynchronous mode provides the technologic advantage of sensorless control. Investigation of asynchronous pump speed modulation during long-term support is warranted to test the hypothesis that operating an LVAD with speed modulation will minimize adverse events in patients supported by an LVAD that may be associated with long-term operation at a constant pump speed.
    [Abstract] [Full Text] [Related] [New Search]