These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CYP11A1 in skin: an alternative route to photoprotection by vitamin D compounds. Author: Tongkao-On W, Carter S, Reeve VE, Dixon KM, Gordon-Thomson C, Halliday GM, Tuckey RC, Mason RS. Journal: J Steroid Biochem Mol Biol; 2015 Apr; 148():72-8. PubMed ID: 25448743. Abstract: Topical 1,25-dihydroxyvitamin D (1,25D) and other vitamin D compounds have been shown to protect skin from damage by ultraviolet radiation (UVR) in a process that requires the vitamin D receptor. Yet, while mice which do not express the vitamin D receptor are more susceptible to photocarcinogenesis, mice unable to 1α-hydroxylate 25-hydroxyvitamin D to form 1,25D do not show increased susceptibility to UVR-induced skin tumors. A possible explanation is that an alternative pathway, which does not involve 1α-hydroxylation, may produce photoprotective compounds from vitamin D. The cholesterol side chain cleavage enzyme CYP11A1 is expressed in skin and produces 20-hydroxyvitamin D3 (20OHD) as a major product of vitamin D3. We examined whether topical 20OHD would affect UVR-induced DNA damage, inflammatory edema or immune suppression produced in Skh:hr1 mice. Photoprotection by 20OHD at 23 or 46pmol/cm(2) against cyclobutane pyrimidine dimers (DNA lesions) after UVR in mice was highly effective, up to 98±0.8%, (p<0.001) and comparable to that of 1,25D. Sunburn edema measured as skinfold thickness 24h after UVR was also significantly reduced by 20OHD (p<0.001). In studies of contact hypersensitivity (CHS), which is suppressed by UVR, topical application of 20OHD to mice protected against UVR-induced immunosuppression (p<0.05), similar to the effect of 1,25D at similar doses (46±0.6% protection with 20OHD, 44±0.5% with 1,25D). Both UVR-induced DNA damage and immunosuppression contribute to increased susceptibility to UVR-induced skin tumors. This study indicates a potentially anti-photocarcinogenic role of the naturally occurring vitamin D metabolite, 20OHD, which does not depend on 1α-hydroxylation for generation. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.[Abstract] [Full Text] [Related] [New Search]