These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MiR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of ZO-1, occludin and claudin-5.
    Author: Miao YS, Zhao YY, Zhao LN, Wang P, Liu YH, Ma J, Xue YX.
    Journal: Cell Signal; 2015 Jan; 27(1):156-67. PubMed ID: 25452107.
    Abstract:
    The purposes of this study were to investigate the possible molecular mechanisms of miR-18a regulating the permeability of blood-tumor barrier (BTB) via down-regulated expression and distribution of runt-related transcription factor 1 (RUNX1). An in vitro BTB model was established with hCMEC/D3 cells and U87MG cells to obtain glioma vascular endothelial cells (GECs). The endogenous expressions of miR-18a and RUNX1 were converse in GECs. The overexpression of miR-18a significantly impaired the integrity and increased the permeability of BTB, which respectively were detected by TEER and HRP flux assays, accompanied by down-regulated mRNA and protein expressions and distributions of ZO-1, occludin and claudin-5 in GECs. Dual-luciferase reporter assay was carried out and revealed RUNX1 is a target gene of miR-18a. Meanwhile, mRNA and protein expressions and distribution of RUNX1 were downregulated by miR-18a. Most important, miR-18a and RUNX1 could reversely regulate the permeability of BTB as well as the expressions and distributions of ZO-1, occludin and claudin-5. Finally, chromatin immunoprecipitation verified that RUNX1 interacted with "TGGGGT" DNA sequence in promoter region of ZO-1, occludin and claudin-5 respectively. Taken together, our present study indicated that miR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of tight junction related proteins ZO-1, occludin and claudin-5, which would attract more attention to miR-18a and RUNX1 as potential targets of drug delivery across BTB and provide novel strategies for glioma treatment.
    [Abstract] [Full Text] [Related] [New Search]