These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prevalence, virulence, and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli in white stork Ciconia ciconia in Poland.
    Author: Szczepańska B, Kamiński P, Andrzejewska M, Śpica D, Kartanas E, Ulrich W, Jerzak L, Kasprzak M, Bocheński M, Klawe JJ.
    Journal: Foodborne Pathog Dis; 2015 Jan; 12(1):24-31. PubMed ID: 25456607.
    Abstract:
    The aim of this study was to investigate the role of white stork Ciconia ciconia as a potential reservoir of Campylobacter spp. Antimicrobial resistance and the presence of putative virulence genes of the isolates were also examined. A total of 398 white stork chicks sampled in Western Poland in habitats with high density of breeding were examined. Rectal swabs were collected during breeding season 2009-2012 from storks developing in a relatively pure environment (Odra meadows), in polluted areas (a copper mining-smelting complex), and in suburbs. Of the anal swabs collected, 7.6% were positive for Campylobacter among chicks (5.3% samples positive for C. jejuni and 2.3% samples positive for C. coli). Samples from polluted areas had the highest prevalence of Campylobacter (12.2%). The prevalence of resistance among C. jejuni and C. coli isolates from young storks was as follows: to ciprofloxacin (52.4%, 44.4%), and to tetracycline (19%, 77.8%). All of the analyzed isolates were susceptible to macrolides. The resistance to both classes of antibiotics was found in the 23.3% of Campylobacter spp. All Campylobacter spp. isolates had cadF gene and flaA gene responsible for adherence and motility. CdtB gene associated with toxin production was present in 88.9% of C. coli isolates and 57.1% of C. jejuni isolates. The iam marker was found more often in C. coli strains (55.6%) compared to C. jejuni isolates (42.9%). Our results confirm the prevalence of Campylobacter spp. in the white stork in natural conditions and, because it lives in open farmlands with access to marshy wetlands, the environmental sources such as water reservoirs and soil-water can be contaminated from white stork feces and the pathogens can be widely disseminated. We can thus conclude that Campylobacter spp. may easily be transmitted to waterfowl, other birds, and humans via its environmental sources and/or by immediate contact.
    [Abstract] [Full Text] [Related] [New Search]