These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue.
    Author: Zhou C, Liu G, Fang T, Lam PK.
    Journal: Bioresour Technol; 2015 Jan; 175():454-62. PubMed ID: 25459855.
    Abstract:
    The thermochemical behaviors during co-combustion of coal gangue (CG), soybean stalk (SS), sawdust (SD) and their blends prepared at different ratios have been determined via thermogravimetric analysis. The simulate experiments in a fixed bed reactor were performed to investigate the partition behaviors of trace elements during co-combustion. The combustion profiles of biomass was more complicated than that of coal gangue. Ignition property and thermal reactivity of coal gangue could be enhanced by the addition of biomass. No interactions were observed between coal gangue and biomass during co-combustion. The volatilization ratios of trace elements decrease with the increasing proportions of biomass in the blends during co-combustion. Based on the results of heating value, activation energy, base/acid ratio and gaseous pollutant emissions, the blending ratio of 20-30% biomass content is regarded as optimum composition for blending and could be applied directly at current combustion application with few modifications.
    [Abstract] [Full Text] [Related] [New Search]