These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Author: Wu C, Sun H, Li Y, Liu X, Du X, Wang X, Xu P. Journal: Biosens Bioelectron; 2015 Apr 15; 66():350-5. PubMed ID: 25463642. Abstract: Promoting the electrocatalytic oxidation of glucose is crucial in glucose biosensor design. In this study, nanoporous gold (NPG) was selected for glucose oxidase (GOx) immobilization and glucose biosensor fabrication because of its open, highly conductive, biocompatible, and interconnected porous structure, which also facilitates the electrocatalytic oxidation of glucose. The electrochemical reaction on the surface of the resulting GOx/NPG/GCE bioelectrode was attributed to the co-catalysis effect of GOx and NPG. A surface-confined reaction in a phosphate buffer solution was observed at the bioelectrode during cyclic voltammetry experiments. Linear responses were observed for large glucose concentrations ranging from 50μM to 10mM, with a high sensitivity of 12.1μAmM(-1)cm(-2) and a low detection limit of 1.02μM. Furthermore, the GOx/NPG/GCE bioelectrode presented strong anti-interference capability against cholesterol, urea, tributyrin, ascorbic acid, and uric acid, along with a long shelf-life. For the detection of glucose in human serum, the data generated by the GOx/NPG/GCE bioelectrode were in good agreement with those produced by an automatic biochemical analyzer. These unique properties make the GOx/NPG/GCE bioelectrode an excellent choice for the construction of a glucose biosensor.[Abstract] [Full Text] [Related] [New Search]