These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Blockage of the early step of lankacidin biosynthesis caused a large production of pentamycin, citreodiol and epi-citreodiol in Streptomyces rochei. Author: Cao Z, Yoshida R, Kinashi H, Arakawa K. Journal: J Antibiot (Tokyo); 2015 May; 68(5):328-33. PubMed ID: 25464973. Abstract: In our effort to find the key intermediates of lankacidin biosynthesis in Streptomyces rochei, three UV-active compounds were isolated from mutant FS18, a gene disruptant of lkcA encoding a non-ribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) hybrid enzyme. Their structures were elucidated on the basis of spectroscopic data of NMR and MS. Two compounds of a higher mobile spot on silica gel TLC (Rf=0.45 in CHCl3-MeOH=20:1) were determined to be an epimeric mixture of citreodiol and epi-citreodiol at the C-6 position in the ratio of 2:1. In contrast, the compound of a lower mobile spot (Rf=~0 in CHCl3-MeOH=20:1) was identical to a 28-membered polyene macrolide pentamycin. The yields of citreodiols and pentamycin in FS18 were 5- and 250-fold higher compared with the parent strain. Introduction of a second mutation of srrX, coding a biosynthetic gene of the signaling molecules SRBs, into mutant FS18 did not affect the production of three metabolites. Thus, their production was not regulated by the SRB signaling molecules in contrast to lankacidin or lankamycin.[Abstract] [Full Text] [Related] [New Search]