These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The muscle ryanodine receptor and its intrinsic Ca2+ channel activity. Author: Lai FA, Meissner G. Journal: J Bioenerg Biomembr; 1989 Apr; 21(2):227-46. PubMed ID: 2546931. Abstract: In skeletal and cardiac muscle, contraction is initiated by the rapid release of Ca2+ ions from the intracellular membrane system, sarcoplasmic reticulum. Rapid-mixing vesicle ion flux and planar lipid bilayer-single-channel measurements have shown that Ca2+ release is mediated by a high-conductance, ligand-gated Ca2+ channel. Using the Ca2+ release-specific probe ryanodine, a 30 S protein complex composed of four polypeptides of Mr approximately 400,000 has been isolated. Reconstitution of the purified skeletal and cardiac muscle 30 S complexes into planar lipid bilayers induced single Ca2+ channel currents with conductance and gating kinetics similar to those of native Ca2+ release channels. Electron microscopy revealed structural similarity with the protein bridges ("feet") that span the transverse-tubule-sarcoplasmic reticulum junction. These results suggest that striated muscle contains an intracellular Ca2+ release channel that is identical with the ryanodine receptor and the transverse-tubule-sarcoplasmic reticulum spanning feet structures.[Abstract] [Full Text] [Related] [New Search]