These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of receptor binding, biological activity, and in vivo tracer kinetics for 1,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D2, and its 24 epimer.
    Author: Reinhardt TA, Ramberg CF, Horst RL.
    Journal: Arch Biochem Biophys; 1989 Aug 15; 273(1):64-71. PubMed ID: 2547343.
    Abstract:
    Scatchard analyses of 1,25-dihydroxyvitamin D receptors (VDR) from chick and rat intestine, bovine thymus, pig kidney cells (LLC-PK1), and human breast cancer cells (T-47D) demonstrated that 1,25-dihydroxyvitamin D3 (1,25-D3) and 1,25-dihydroxyvitamin D2 (1,25-D2) had equal affinities for VDR. 24-Epi-1,25-dihydroxyvitamin D2 (24-epi-1,25-D2) exhibited affinities for VDR equal to that of 1,25-D2 and 1,25-D3 in most of these tissues. Scatchard analysis with 24-epi-[3H]1,25-D2 underestimated total VDR by 50-70% in rat intestine, LLC-PK1, and T-47D cells. The biological activity of 24-epi-1,25-D2 was found to be only 30-70% of 1,25-D3 and 1,25-D2 as determined by in vivo induction of intestinal calcium transport and bone calcium resorption in the rat and in vitro induction of 23- and 24-hydroxylase activities in T-47D cells. In vivo tracer kinetic studies demonstrated that in the rat 1,25-D3 and 1,25-D2 kinetics were similar, whereas 24-epi-1,25-D2 had a 25% shorter plasma half-life and was cleared from the body 2.8 times faster than the natural hormones. This more rapid clearance of 24-epi-1,25-D2 along with reduced VDR binding appears to explain the reduced biological activity of 24-epi-1,25-D2. Our data clearly demonstrate that although there are differences in side chain structure between 1,25-D2 and 1,25-D3, the VDR binding, biological activity, and whole body tracer kinetics of these two metabolites are virtually identical. However, movement of the 28 methyl of 1,25-D2 from its natural S configuration to the R configuration significantly alters the activity of this hormone.
    [Abstract] [Full Text] [Related] [New Search]