These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. Author: Peters NC, Pagán AJ, Lawyer PG, Hand TW, Henrique Roma E, Stamper LW, Romano A, Sacks DL. Journal: PLoS Pathog; 2014 Dec; 10(12):e1004538. PubMed ID: 25473946. Abstract: In contrast to the ability of long-lived CD8(+) memory T cells to mediate protection against systemic viral infections, the relationship between CD4(+) T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44(+)CD62L(-)T-bet(+)Ly6C+ effector (T(EFF)) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C(+) T(EFF) cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44(+)CD62L(-)Ly6C(-) effector memory or CD44(+)CD62L(+)Ly6C(-) central memory cells. During chronic infection, Ly6C(+) T(EFF) cells were maintained at high frequencies via reactivation of T(CM) and the T(EFF) themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing T(EFF) cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.[Abstract] [Full Text] [Related] [New Search]