These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Joint Torques and Patellofemoral Force During Single-Leg Assisted and Unassisted Cycling. Author: Bini RR, Jacques TC, Vaz MA. Journal: J Sport Rehabil; 2016 Feb; 25(1):40-7. PubMed ID: 25474095. Abstract: CONTEXT: Unassisted single-leg cycling should be replaced by assisted single-leg cycling, given that this last approach has potential to mimic joint kinetics and kinematics from double-leg cycling. However, there is need to test if assisting devices during pedaling effectively replicate joint forces and torque from double-leg cycling. OBJECTIVES: To compare double-leg, single-leg assisted, and unassisted cycling in terms of lower-limb kinetics and kinematics. DESIGN: Cross-sectional crossover. SETTING: Laboratory. PARTICIPANTS: 14 healthy nonathletes. INTERVENTIONS: Two double-leg cycling trials (240 ± 23 W) and 2 single-leg trials (120 ± 11 W) at 90 rpm were performed for 2 min using a bicycle attached to a cycle trainer. Measurements of pedal force and joint kinematics of participants' right lower limb were performed during double- and single-leg trials. For the single-leg assisted trial, a custom-made adaptor was used to attach 10 kg of weight to the contralateral crank. MAIN OUTCOME MEASURES: Peak hip, knee, and ankle torques (flexors and extensors) along with knee-flexion angle and peak patellofemoral compressive force. RESULTS: Reduced peak hip-extensor torque (10%) and increased peak knee-flexor torque (157%) were observed at the single-leg assisted cycling compared with the double-leg cycling. No differences were found for peak patellofemoral compressive force or knee-flexion angle comparing double-leg with single-leg assisted cycling. However, single-leg unassisted cycling resulted in larger peak patellofemoral compressive force (28%) and lower knee-flexion angle (3%) than double-leg cycling. CONCLUSIONS: These results suggest that although single-leg assisted cycling differs for joint torques, it replicates knee loads from double-leg cycling.[Abstract] [Full Text] [Related] [New Search]