These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of temperature - heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings. Author: Ergün N, Özçubukçu S, Kolukirik M, Temizkan Ö. Journal: Acta Biol Hung; 2014 Dec; 65(4):439-50. PubMed ID: 25475983. Abstract: In this study, the effect of heat and chromium (Cr) heavy metal interactions on wheat seedlings (Triticum aestivum L. cv. Ç-1252 and Gun91) was investigated by measuring total chlorophyll and carotenoid levels, catalase (CAT) and ascorbate peroxidase (APX) antioxidant enzyme activities, and MYB73, ERF1 and TaSRG gene expression. Examination of pigment levels demonstrated a decrease in total chlorophyll in both species of wheat under combined heat and heavy metal stress, while the carotenoid levels showed a slight increase. APX activity increased in both species in response to heavy metal stress, but the increase in APX activity in the Gun91 seedlings was higher than that in the Ç-1252 seedlings. CAT activity increased in Gun91 seedlings but decreased in Ç-1252 seedlings. These results showed that Gun91 seedling had higher resistance to Cr and Cr + heat stresses than the Ç-1252 seedling. The quantitative molecular analyses implied that the higher resistance was related to the overexpression of TaMYB73, TaERF1 and TaSRG transcription factors. The increase in the expression levels of these transcription factors was profound under combined Cr and heat stress. This study suggests that TaMYB73, TaERF1 and TaSRG transcription factors regulate Cr and heat stress responsive genes in wheat.[Abstract] [Full Text] [Related] [New Search]