These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dexamethasone loaded core-shell SF/PEO nanofibers via green electrospinning reduced endothelial cells inflammatory damage. Author: Chen W, Li D, Ei-Shanshory A, El-Newehy M, Ei-Hamshary HA, Al-Deyab SS, He C, Mo X. Journal: Colloids Surf B Biointerfaces; 2015 Feb 01; 126():561-8. PubMed ID: 25481687. Abstract: Silk fibroin (SF)/PEO nanofibers prepared by green electrospinning is safe, non-toxic and environment friendly, it is a potential drug delivery carrier for tissue engineering. In this study, a core-shell nanofibers named as Dex@SF/PEO were obtained by green electrospinning with SF/PEO as the shell and dexamethasone (Dex) in the core. The nanofiber morphology and core-shell structure were studied by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The Dex release behavior from the nanofibers was tested by High Performance liquid (HPLC) method. The protective effect of drug loaded nanofibers mats on Porcine hip artery endothelial cells (PIECs) against LPS-induced inflammatory damage were determined by MTT assay. TEM result showed the distinct core-shell structure of nanofibers. In vitro drug release studies demonstrated that dexamethasone can sustain release over 192 h and core-shell nanofibers showed more slow release of Dex compared with the blending electrospinning nanofibers. Anti-inflammatory activity in vitro showed that released Dex can reduce the PIECs inflammatory damage and apoptosis which induced by lipopolysaccharide (LPS). Dex@SF/PEO nanofibers are safe and non-toxic because of no harmful organic solvents used in the preparation, it is a promising environment friendly drug carrier for tissue engineering.[Abstract] [Full Text] [Related] [New Search]