These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Doxorubicin-loaded alginate-g-poly(N-isopropylacrylamide) micelles for cancer imaging and therapy.
    Author: Ahn DG, Lee J, Park SY, Kwark YJ, Lee KY.
    Journal: ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):22069-77. PubMed ID: 25487046.
    Abstract:
    Chemotherapy is a widely adopted method for the treatment of cancer. However, its use is often limited due to side effects produced by anti-cancer drugs. Therefore, various drug carriers, including polymeric micelles, have been investigated to find a method to overcome this limitation. In this study, alginate-based, self-assembled polymeric micelles were designed and prepared using alginate-g-poly(N-isopropylacrylamide) (PNIPAAm). Amino-PNIPAAm was chemically introduced to the alginate backbone via carbodiimide chemistry. The resulting polymer was dissolved in distilled water at room temperature and formed self-assembled micelles at 37 °C. Characteristics of alginate-g-PNIPAAm micelles were dependent on the molecular weight of PNIPAAm, the degree of substitution, and the polymer concentration. Doxorubicin (DOX), a model anti-cancer drug, was efficiently encapsulated in alginate-g-PNIPAAm micelles, and sustained release of DOX from the micelles was achieved at 37 °C in vitro. These micelles accumulated at the tumor site of a tumor-bearing mouse model as a result of the enhanced permeability and retention effect. Interestingly, DOX-loaded alginate-g-PNIPAAm micelles showed excellent anti-cancer therapeutic efficacy in a mouse model without any significant side effects. This approach to designing and tailoring natural polymer-based systems to fabricate nanoparticles at human body temperature may provide a useful means for cancer imaging and therapy.
    [Abstract] [Full Text] [Related] [New Search]