These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Practical approach to physical-chemical acid-base management. Stewart at the bedside. Author: Magder S, Emami A. Journal: Ann Am Thorac Soc; 2015 Jan; 12(1):111-7. PubMed ID: 25496220. Abstract: The late Peter Stewart developed an approach to the analysis of acid-base disturbances in biological systems based on basic physical-chemical principles. His key argument was that the traditional carbon dioxide/bicarbonate analysis with just the use of the Henderson-Hasselbalch equation does not account for the important role in the regulation of H(+) concentration played by strong ions, weak acids and water itself. Acceptance of his analysis has been limited because it requires a complicated set of calculations to account for all the variables and it does not provide simple clinical guidance. However, the analysis can be made more pragmatic by using a series of simple equations to quantify the major processes in acid-base disturbances. These include the traditional PCO2 component and the addition of four metabolic processes, which we classify as "water-effects," "chloride-effects," "albumin effects," and "others." Six values are required for the analysis: [Na(+)], [Cl(-)], pH, Pco2, albumin concentration, and base excess. The advantage of this approach is that it gives a better understanding of the mechanisms behind acid-base abnormalities and more readily leads to clinical actions that can prevent or correct the abnormalities. We have developed a simple free mobile app that can be used to input the necessary values to use this approach at the bedside (Physical/Chemical Acid Base Calculator).[Abstract] [Full Text] [Related] [New Search]