These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene.
    Author: Xu H, Xiao J, Liu B, Griveau S, Bedioui F.
    Journal: Biosens Bioelectron; 2015 Apr 15; 66():438-44. PubMed ID: 25497984.
    Abstract:
    A hybrid nanocomposite based on cobalt phthalocyanine (CoPc) immobilized on nitrogen-doped graphene (N-G) (N-G/CoPc) has been developed to modify glassy carbon electrode (GCE) for the sensitive detection of thiols. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetric studies showed that cobalt phthalocyanine and nitrogen doped graphene have a synergic effect and significantly enhance the electrocatalytic activity of the modified electrode towards thiols oxidation compared with electrodes modified with solely CoPc or N-G. The electrochemical oxidation responses were studied and the reaction mechanisms were discussed. The sensors exhibited a wide linear response range from 1μΜ to 16mM and a low detection limit of 1μΜ for the determination of l-cysteine, reduced l-glutathione and 2-mercaptoethanesulfonic acid in alkaline aqueous solution. The proposed N-G/CoPc hybrids contribute to the construction of rapid, convenient and low-cost electrochemical sensors for sensitive detection of thiols.
    [Abstract] [Full Text] [Related] [New Search]