These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endogenous flow-induced nitric oxide reduces superoxide-stimulated Na/H exchange activity via PKG in thick ascending limbs.
    Author: Hong NJ, Garvin JL.
    Journal: Am J Physiol Renal Physiol; 2015 Mar 01; 308(5):F444-9. PubMed ID: 25503735.
    Abstract:
    Luminal flow stimulates endogenous nitric oxide (NO) and superoxide (O2 (-)) production by renal thick ascending limbs (TALs). The delicate balance between these two factors regulates Na transport in TALs; NO enhances natriuresis, whereas O2 (-) augments Na absorption. Endogenous, flow-stimulated O2 (-) enhances Na/H exchange (NHE). Flow-stimulated NO reduces flow-induced O2 (-), a process mediated by cGMP-dependent protein kinase (PKG). However, whether flow-stimulated, endogenously-produced NO diminishes O2 (-)-stimulated NHE activity and the signaling pathway involved are unknown. We hypothesized that flow-induced NO reduces the stimulation of NHE activity caused by flow-induced O2 (-) via PKG in TALs. Intracellular pH recovery after an acid load was measured as an indicator of NHE activity in isolated, perfused rat TALs. l-Arginine, the NO synthase substrate, decreased NHE activity by 34 ± 5% (n = 5; P < 0.04). The O2 (-) scavenger tempol decreased NHE activity by 46 ± 8% (n = 6; P < 0.004) in the absence of NO. In the presence of l-arginine, the inhibitory effect of tempol on NHE activity was reduced to -19 ± 6% (n = 6; P < 0.03). The soluble guanylate cyclase inhibitor LY-83583 blocked the effect of l-arginine thus restoring tempol's effect on NHE activity to -42 ± 4% (n = 6; P < 0.0005). The PKG inhibitor KT-5823 also inhibited l-arginine's effect on tempol-reduced NHE activity (-43 ± 5%; n = 5; P < 0.03). We conclude that flow-induced NO reduces the stimulatory effect of endogenous, flow-induced O2 (-) on NHE activity in TALs via an increase in cGMP and PKG activation.
    [Abstract] [Full Text] [Related] [New Search]