These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Selection of reference genes for quantitative real-time PCR in six oil-tea camellia based on RNA]. Author: Zhou CF, Lin P, Yao XH, Wang KL, Chang J, Han XJ. Journal: Mol Biol (Mosk); 2013; 47(6):959-75. PubMed ID: 25509858. Abstract: qRT-PCR is becoming a routine tool in molecular biology to study gene expression. It is nec- essary to find stable reference genes when performing qRT-PCR. The expression of genes cloned in oil-tea camellia currently can't be accurately analyzed because of a lack of suitable reference genes. We collected different tissues (including roots, stems, leaves, flowers and seeds) from six oil-tea camellia species to determine stable reference genes. Five novel and ten traditional reference gene sequences were selected from the RNA-seq database of Camellia oleifera C. Abel seeds and specific PCR primers were designed for each. Cycle threshold (Ct) data were obtained from each reaction for all samples. Three different software tools, geNorm, NormFinder and BestKeeper were applied to calculate the expression stability of the candidate reference genes according to the Ct values. The results were similar between analyzed by the three software packages, and indicated that the traditional gene TUBa-3, AC17a and the novel gene CESA were relatively stable in all species and tissues. However, no genes were sufficiently stable across all species and tissues, thus the optimal number of reference genes required for accurate normalization varied from two to six. Finally, the relative expression ofsqualene synthase (SQS) and squalene epoxidase (SQE) genes related to important ingredients squalene and tea saponin in oil-tea camellia seeds were compared by using stable to less stable reference genes. The comparison results validated the selection of reference genes in the current study. In summary, different optimal numbers of suitable reference genes were found for the different tissues of six oil-tea camellia species.[Abstract] [Full Text] [Related] [New Search]