These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Puberty in females enhances the risk of an outcome of multiple sclerosis in children and the development of central nervous system autoimmunity in mice. Author: Ahn JJ, O'Mahony J, Moshkova M, Hanwell HE, Singh H, Zhang MA, Marrie RA, Bar-Or A, Sadovnick DA, Dunn SE, Banwell BL. Journal: Mult Scler; 2015 May; 21(6):735-48. PubMed ID: 25533291. Abstract: BACKGROUND: For reasons that remain unclear, three times more women develop multiple sclerosis (MS) than men. This preponderance among women is evident only after 12 years of age, implicating pubertal factors in the risk of MS. OBJECTIVE: To investigate the influence of female puberty on central nervous system (CNS) autoimmunity. METHODS: We examined the relationship between age of menarche on MS outcomes in 116 female children (< 16 years old) whom presented with incident 'acquired demyelinating syndromes' (ADS) and were followed prospectively in the national Canadian Pediatric Demyelinating Disease Study, from 2004-2013. Furthermore, we directly investigated the effects of puberty on susceptibility to experimental autoimmune encephalomyelitis (EAE) in two groups of female mice that differed only in their pubertal status. RESULTS: In the ADS children, a later age of menarche was associated with a decreased risk of subsequent MS diagnosis. This relationship persisted, after accounting for patient age at ADS presentation and the presence of ≥1 T2 lesions on brain magnetic resonance imaging (MRI), with a hazard ratio (HR) of 0.64; and additional factors that associate with MS outcomes in ADS children, including low vitamin D levels. Furthermore, we found female mice that had transitioned through puberty were more susceptible to EAE than age-matched, pre-pubertal mice. CONCLUSION: Puberty in females enhances CNS autoimmune mechanisms that lead to MS in humans and EAE in mice.[Abstract] [Full Text] [Related] [New Search]