These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Generation of Lys-gamma 3-melanotropin from pro-opiomelanocortin 1-77 by a bovine intermediate lobe secretory vesicle membrane-associated aspartic protease and purified pro-opiomelanocortin converting enzyme.
    Author: Estivariz FE, Birch NP, Loh YP.
    Journal: J Biol Chem; 1989 Oct 25; 264(30):17796-801. PubMed ID: 2553692.
    Abstract:
    The ability of bovine intermediate lobe secretory vesicle membrane-associated enzyme(s) and purified, soluble paired basic residue-specific, pro-opiomelanocortin converting enzyme (Loh, Y.P., Parish, D. C., and Tuteja, R. (1985) J. Biol. Chem. 260, 7194-7205) to cleave bovine NH2-terminal pro-opiomelanocortin1-77 (N-POMC 1-77) was investigated. Purified pro-opiomelanocortin converting enzyme and an enzyme activity associated with the secretory vesicle membrane were shown to cleave bovine N-POMC1-77 to two major products: N-POMC1-49 and Lys-gamma 3-melanotropin (MSH), and one minor product, gamma 3-MSH. These products were identified by their retention times on high performance liquid chromatography, immunological characteristics, and for Lys-gamma 3-MSH, amino acid composition. The products generated indicate cleavage preferentially between Arg 49-Lys 50 of bN-POMC1-77 (where b indicates bovine), which is identical to the processing pattern found in the bovine intermediate lobe in situ. The membrane converting activity was shown to be stimulated by 5 mM Ca2+ and has a pH optimum of 4-5 and an inhibitor profile characteristic of an aspartic protease. This suggests that the membrane-associated enzyme involved is very similar or identical to the purified, soluble pro-opiomelanocortin converting enzyme, which has previously been reported to be an acidic, aspartic protease responsible for the initial steps of POMC processing. The results of this study lead to the proposal that the lack of processing of the Arg49-Lys50 site in POMC in the anterior lobe versus the intermediate lobe of the pituitary in vivo may be due to other regulatory mechanisms rather than invoking the existence in the intermediate lobe of another enzyme specific for this site, different from pro-opiomelanocortin converting enzyme.
    [Abstract] [Full Text] [Related] [New Search]