These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interactions between tissue-type plasminogen activator and extracellular matrix-associated plasminogen activator inhibitor type 1 in the human hepatoma cell line HepG2.
    Author: Owensby DA, Morton PA, Schwartz AL.
    Journal: J Biol Chem; 1989 Oct 25; 264(30):18180-7. PubMed ID: 2553701.
    Abstract:
    Hepatic parenchymal cells contribute to the clearance of circulating tissue-type plasminogen activator (t-PA) in vivo. The hepatocyte extracellular matrix is interposed between the endothelial-lined sinusoids and the parenchymal cell surface and thus may influence t-PA clearance. To test this hypothesis, the well differentiated human hepatoma cell line HepG2 was used to characterize the role of extracellular matrix in t-PA clearance in vitro. Previous studies with these cells demonstrated their capacity for specific catabolism of t-PA in a system modulated by plasminogen activator inhibitor type 1 (PAI-1). In the present study the extracellular matrix growth substratum of HepG2 cells is shown to contain active PAI-1. PAI-1 is distributed in a punctuate pattern throughout the substratum. Components of the substratum confer stability to active PAI-1 for intervals of at least 24 h. Exposing substratum to 125I-t-PA leads rapidly to the formation and release of a sodium dodecyl sulfate-stable 95-kDa 125I-t-PA.PAI-1 complex. In comparison, cell monolayers have the additional capacity for specific binding of the complex. However, PAI-1 is not detected at the surface of HepG2 cells in suspension, suggesting that 125I-t-PA.PAI-1 complexes form in substratum and subsequently bind to cells. Specific binding of performed 125I-t-PA.PAI-1, but not 125I-t-PA, was demonstrated for HepG2 cells in suspension. These results suggest that components of extracellular matrix participate in the clearance of t-PA by hepatocytes.
    [Abstract] [Full Text] [Related] [New Search]