These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+-mediated neuronal death in rat brain neuronal cultures by veratridine: protection by flunarizine.
    Author: Pauwels PJ, Van Assouw HP, Leysen JE, Janssen PA.
    Journal: Mol Pharmacol; 1989 Oct; 36(4):525-31. PubMed ID: 2554110.
    Abstract:
    Neuronal cell degeneration was studied in vitro in primary rat brain neuronal cultures grown in serum-free, chemically defined, CDM R12 medium, by measuring lactate dehydrogenase (LDH) released in the culture medium. A Ca2+-dependent neuronal cell degeneration was observed after prolonged and transient exposure 30 microM veratridine. The release of LDH occurred gradually and could be completely prevented by 2 mM ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, 0.1 microM tetrodotoxin, and 1 microM flunarizine. Flunarizine was without effect on neuronal cell loss induced by 1 mM glutamate, 1 mM kainic acid, and 5 mM KCN. The lack of effect on neurotoxicity induced by 1 mM glutamate differentiates flunarizine from N-methyl-D-aspartate antagonists such as MK-801. The latter protected at nanomolar concentrations against glutamate-induced neuronal cell death but had a maximal effect only at 0.1 mM on the veratridine-induced released LDH. It is suggested that, besides the excitatory amino acid receptor pathway, prolonged opening of the veratridine-sensitive Na+ channel can be neurotoxic. The latter can be prevented by flunarizine. The role of Na+ channel blockers as therapeutic agents in cerebral ischemia is discussed.
    [Abstract] [Full Text] [Related] [New Search]