These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid on-site detection of ephedrine and its analogues used as adulterants in slimming dietary supplements by TLC-SERS. Author: Lv D, Cao Y, Lou Z, Li S, Chen X, Chai Y, Lu F. Journal: Anal Bioanal Chem; 2015 Feb; 407(5):1313-25. PubMed ID: 25542571. Abstract: Ephedrine and its analogues are in the list of prohibited substance in adulteration to botanical dietary supplements (BDS) for their uncontrollable stimulating side effects. However, they were always adulterated illegally in BDS to promote losing weight. In order to avoid detection, various kinds of ephedrine analogues were added rather than ephedrine itself. This has brought about great difficulties in authentication of BDS. In this study, we put forward for the first time a method which combined thin-layer chromatography (TLC) and surface-enhanced Raman scattering (SERS) to directly identify trace adulterant. Ephedrine, pseudoephedrine, methylephedrine, and norephedrine were mixed and used in this method to develop an analytical model. As a result, the four analogues were separated efficiently in TLC analysis, and trace-components and low-background SERS detection was realized. The limit of detection (LOD) of the four analogues was 0.01 mg/mL. Eight common Raman peaks (△υ = 620, 1003, 1030, 1159, 1181, 1205, 1454, 1603 cm(-1)) were extracted experimentally and statistically to characterize the common feature of ephedrine analogues. A TLC-SERS method coupled with common-peak model was adopted to examine nine practical samples, two of which were found to be adulterated with ephedrine analogues. Identification results were then confirmed by UPLC-QTOF/MS analysis. The proposed method was simple, rapid, and accurate and can also be employed to trace adulterant identification even when there are no available reference derivatives on-site or unknown types of ephedrine analogues are adulterated.[Abstract] [Full Text] [Related] [New Search]