These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier. Author: Xu Z, Zhu S, Wang M, Li Y, Shi P, Huang X. Journal: ACS Appl Mater Interfaces; 2015 Jan 21; 7(2):1355-63. PubMed ID: 25546399. Abstract: Paclitaxel (PTX) is an extensively used potent chemotherapy drug; however, low water solubility, poor bioavailability, and emergence of drug resistance in patients limited its biological application. In this report, we proposed a new drug delivery system for cancer therapy based on graphene oxide (GO), a novel 2D nanomaterial obtained from the oxidation of natural graphite, to improve the utilization rate of PTX. PTX was first connected to biocompatible 6-armed poly(ethylene glycol), followed by covalent introduction into the surface of GO sheets via a facile amidation process under mild conditions, affording the drug delivery system, GO-PEG-PTX (size 50-200 nm). GO-PEG nanosized carrier could quickly enter into human lung cancer A549 and human breast cancer MCF-7 cells verified by inverted fluorescence microscope using fluorescein isothiocyanate as probe. This nanocarrier was nontoxic to A549 and MCF-7 cells without linking with PTX. Nevertheless, GO-PEG-PTX showed remarkably high cytotoxicity to A549 and MCF-7 cells in a broad range of concentration of PTX and time compared to free PTX. This kind of nanoscale drug delivery system based on PEGylated GO may find widespread application in biomedicine.[Abstract] [Full Text] [Related] [New Search]