These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of bencyclane on normal and cevadine-modified Na channels in frog skeletal muscle.
    Author: Nánási PP, Bodnár Z, Dankó M.
    Journal: Gen Physiol Biophys; 1989 Oct; 8(5):447-58. PubMed ID: 2556322.
    Abstract:
    The effect of 10(-5) mol/l bencyclane on the repetitive electrical activity of muscle membrane was studied with the conventional microelectrode technique. Electrical activity was induced by repetitive stimulation in normal Ringer solution (train) or by a single depolarizing current pulse in the presence of 10(-6) mol/l cevadine (volley). Bencyclane decreased, in a use-dependent manner, the maximum rates of depolarization and repolarization (Vmax+ and Vmax-, resp.) of the action potentials both of the train and the volley. The inhibition of Vmax+ and Vmax- was proportional; however, it was stronger for the volleys than for the trains. The cycle length (mean interspike interval) of the volley was increased by bencyclane; the prolongation was progressive during consecutive cycles. The dissociation of bencyclane from the Na channel was studied by applying trains of different durations with equal pulse numbers. Bencyclane at a higher concentration (5 x 10(-5) mol/l) caused a reversible tonic block: the overshoot potentials, Vmax+ and Vmax- were markedly reduced. The reduction of Vmax- was slightly stronger than that of Vmax+. Slow membrane potential oscillation (SMPO) was evoked by treating the muscle with 10(-4) mol/l of cevadine. The administration of 5 x 10(-6) mol/l bencyclane decreased the frequency of SMPO, while 10(-5) mol/l bencyclane terminated the slow oscillation activity without changing its baseline potential. The present results indicate that bencyclane induces use-dependent inhibition of Na channels in muscle, similarly as do class 1 antiarrhytnmic drugs. Inhibition was observed with both normal and cevadine-modified Na channels.
    [Abstract] [Full Text] [Related] [New Search]